3 research outputs found

    Feasibility and optimal design of a hybrid power system for rural electrification for a small village

    Get PDF
    A hybrid renewable energy system is at present accepted globally, as the best option for rural electrification particularly in areas where grid extension is infeasible. However, the need for hybrid design to be optimal in terms of operation and component selection serves as a challenge in obtaining reliable electricity at a minimum cost. In this work, the feasibility of installing a small hydropower into an existing water supply dam and the development of an optimal sizing optimization model for a small village-Itapaji, Nigeria were carried out. The developed hybrid power system (HPS) model consists of solar photovoltaic, small hydropower, battery and diesel generator. The optimal sizing of the system’s components for optimum configuration was carried out using Genetic Algorithm. The hybrid model’s results were compared with hybrid optimization model for electric renewable (HOMER) using correlation coefficient (r) and root mean square error (RMSE) to verify its validity. The results of the simulation obtained from the developed model showed better correlation coefficient (r) of 0.88 and root mean square error (RMSE) of 0.001 when compared to that of HOMER. This will serve as a guide for the power system engineers in the feasibility assessment and optimal design of HPS for rural electrification

    Comparative assessment of techno-economic and environmental benefits in optimal allocation of distributed generators in distribution networks

    No full text
    Integration of Distributed Generation (DG) into power systems, especially at the distribution end, is one of the verified approaches that has been utilized to reduce power loss, enhanced reliable electricity supply, and promote environmental sustainability by reducing Greenhouse Gas (GHG) emissions. In this study, an approach for solving an optimal DG allocation problem in distribution network with the objective function of maximizing the financial Techno-Economic and Environmental Benefits (TEEBs) of the grid is discussed. The TEEBs analysis of the DG planning problem is uniquely modeled as financial cost-benefit due to reduced power purchased and reduced Penalty Emission Cost (PEC) arising from the reduction of GHG emission in the network. A comprehensive and comparative analysis was carried out for the four classes of DG technology types to identify the environmental impact of integrating renewable and non-renewable DGs into the distribution system. Furthermore, The DG planning problem is solved using the Black Widow Optimizer (BWO) technique. The study implemented the proposed methodology on the standard IEEE 69-bus and Nigerian Shasa 59-bus distribution systems. The results show that renewable DGs’ optimal integration yielded higher TEEBs than non-renewable DGs despite the high capital cost of renewable DGs. Furthermore, the study affirmed the viability and efficiency of the proposed method by comparing the results of power loss obtained for the various DG types with that of techniques in open works of literature

    Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks

    No full text
    The Distributed Generator types have different combinations of real and reactive power characteristics, which can affect the total power loss and the voltage support/control of the radial distribution networks (RDNs) in different ways. This paper investigates the impact of DG’s penetration level (PL) on the power loss and voltage profile of RDNs based on different DG types. The DG types are modeled depending on the real and reactive power they inject. The voltage profiles obtained under various circumstances were fairly compared using the voltage profile index (VPI), which assigns a single value to describe how well the voltages match the ideal voltage. Two novel effective power voltage stability indices were developed to select the most sensitive candidate buses for DG penetration. To assess the influence of the DG PL on the power loss and voltage profile, the sizes of the DG types were gradually raised on these candidate buses by 1% of the total load demand of the RDN. The method was applied to the IEEE 33-bus and 69-bus RDNs. A PL of 45–76% is achieved on the IEEE 33-bus and 48–55% penetration on the IEEE 69-bus without an increase in power loss. The VPI was improved with increasing PL of DG compared to the base case scenario
    corecore